

Modelling and Simulation of Adaptive Optics in the Scilab/Scicos Environment

Chen jingyuan, Gan guangyong, Tao yingxue

The institude of Applied Physics and Computational Mathematics, Beijing, 100088, China

jingyuan_chen@yahoo.com.cn

Abstract: SciAO is an open source, cross-platform, and user-friendly toolbox

based on the Scilab/Scicos environment for modeling and simulation of wave optics,
especially the adaptive optics system. This paper describes the functionality available
in SciAO, gives some application examples, and discusses future plans for this
toolbox.

Keywords: model and simulation, adaptive optics, Scilab/Scicos, open source

1. Introduction

Through nearly 40-years development, Adaptive optics (AO) [1] is now a mature
technology widely used in optical astronomy, high energy laser (HEL) systems and
other modern optical equipments. At the same time, AO is also a dynamic field of
research, new architectures, algorithms, and applications being proposed have pushing
the original concept (first suggested by Babcock at 1953) to the technological limits
(e.g. MCAO: Multi-Conjugate AO system).

To grasp the behavior and the performance analysis of these optical systems, a
theoretical analyse is obviously the first choice, while this approach can’t work well
in practise, partly because the overly complexity of AO systems and its complex
working enviroment, partly because a number of problems are not open to analytical
solution. In fact, this kind of study involves the complex nature of the turbulent
atmospheric environment, and also the complexity of interactions of many connected
instruments and concepts in a whole AO system. Within this background of the
growing complexity of these system architectures and the expense of their
implementation, time domain numerical simulations can play a very useful role in
providing a quantitative evaluation of their capabilities. The advantage of a simulation
lies in the fact that absolute truth is known, and the fact it is very cheap and
controllable. By generating random realizations of atmospheric turbulence and
performing wave propagation through this turbulence, a simulation can model the
effects of turbulence degradation, and can preserve correlations between beams that
arise from tilt and focal anisoplanatism. A simulation can accurately represent the
effects of scintillation, which are important in high precision applications such as
direct planetary imaging and in atmospheric monitoring using Scidar. With models of
the adaptive optics system components and by replicating the reconstructor and
control law, a simulation can accurately represent the process of wavefront sensing
and correction. Such functionality may be used to generate performance predictions
for an adaptive optics system, and to evaluate the system design. The highly
controlled environment provided by simulation affords the opportunity of performing

quantitative comparisons between different reconstruction and control algorithms.
Finally, a simulation can generate field dependent PSFs (Point Spread Function) in
the science focal plane, which may be used to evaluate scientific performance metrics
other than residual wavefront error. And together with a simulated set of telemetry
data, these PSF’s may be used to test PSF reconstruction algorithms.

There are a large number of softwares that can execute adaptive optics simulation.
Most of them are commercial or proprietary products, and its inner mechanism is not
known to other researchers. Some simulation softwares are open source, while these
code are almost all written in FORTRAN, or C/C++, and they have not good
interfaces for other people to use. Many of today’s codes (e.g. AO tools developed by
tOSC) are written entirely or partly in MATLAB, which has the advantages of an
extensive library of math routines, very fast matrix operations, plenty of other
toolboxes and very vell graphical outputs. The main limitations of MATLAB are the
cost of the licenses and the slow speed for non-matrix iterative calculations.

Recently we have been developing a toolbox (we called it SciAO) based on
Scilab/Scicos [2] environment in which we can model and simulate most adaptive
optics devises or other AO-related problems. Although this toolbox is mainly be
designed to satisfy the requirement of AO simulations, we also moderately consider
the needs to some other optics simulation system (e.g. the simulation of general Wave
optics and imaging devises) and designed some software modules for them, so this
toolbox can also be used to simulating other optics problems beyond the AO field.
Most of the programs of our SciAO toolbox are written by C/C++ language or based
on some excellent open source C/C++ libraries, so it is efficient and cross-platform.
At the same time, we also fully make use of the powerful graphical and interface
program ability, especially the dynamic modeler and simulator (Scicos) of the Scilab
environment, so it is very easy for other researchers or beginners to learn and use this
toolbox to simulate their peculiar adaptive or other optical problems. Our toolbox will
be released under open-sourced GPL license and all other people who are interested in
this software can download, modify, or use it if they abide this license.

In this paper, we will give a general description of the SciAO toolbox (now the
steady version is 0.2) and give some examples of simulation applications. At the last
we also give some plans of the functional extension for SciAO. While first we need
give a introduction of the basic concept of adaptive optics and its simulation, which is
a unacquainted field to most of other researchers.

2. Adaptive optics concept and some relevant simulation software

Adaptive optics is a newly developed technology in order to improve the
performance of the reflecting telescopes by reducing the effects of optical aberration
or distortions, especially the distortions caused by the Earth's atmosphere. An classical
adaptive optics system tries to correct these distortions, using quality-of-image
detector (sensors), tip/tilt mirrors and deformable mirrors (correctors), and a
controllable computer that receives input from the detector and calculates the optimal
deformation of the mirror, and the corresponding control signals which will be used to
make the deformable (or other corrector devises) change its shape or move. Figure 1

is an outline plot of the main components and its basic work diagram of a classical
adaptive optics (SCAO: Single-Conjugate AO system).

figure 1: the structure of a classic SCAO system

Generally say, AO simulation code can be roughly divided into two types. At the

lower level are the physical and engineering codes that try to model and predict the
complex interactions or performance based on first principles. They can predict
detailed system performance characteristics such as evolution of wave field phase,
intensity profiles, and a number of other information such as deformable mirror (DM)
actuator commands or wavefront sensor pixel output, etc. These are also known as
wave optics, time domain codes. At the top level are the scaling law or systems
engineering code. These provide much faster predictions based on scaling laws or
empirical fits to simulation or experimental results. At below, we will give a briefly
description of some AO simulation codes which are relevant to our SciAO toolbox.
They are WaveTrain, CAOS, LightPipes, and Arroyo. All of them belong to the
physical or engineering codes.

WaveTrain [3] is a user-friendly wave and adaptive optics propagation code
mainly developed and distributed by MZA Associates Corporation, USA, under
funding from Air Force Research Laboratory, USA. It has been implemented using
Tempus (another main product of MZA), which is a general purpose simulation
development environment similar to the Simulink toolbox of Matlab. Using Tempus
as the foundation, WaveTrain construct a lot of component library for wave and
adaptive optics, where each type of software component models a different system
component or physical effect.

CAOS [4] (Code for Adaptive Optics System) is a set of software tools
specifically designed to allow the modeling and simulating of any kind of adaptive
optics system originally developed in the framework of the “TMR Network on Laser
guide star for 8 meter class telescopes” funded by the European Community. Similar
to WaveTrain, CAOS is also a user-friendly AO simulation tool, and is essentially a

set of modules designed to be used within a graphical programming environment –
the CAOS Application builder (another clone of Simulink), where the data flow
between modules can be defined, and the parameters of each module can be set.
Dissimilar to WaveTrain, CAOS is an open source software, but it is implemented in
the IDL (Interactive Data Language, designed by RSI Corp).

LightPipes [5] (written by Dr. Gleb Vdovin) is a tool that can model free space
diffractive propagation and the effects of various optic devises such as apertures and
lenses. The simulation used the pipe command to transfer the wavefront data between
individual programs. This tool contains no support for modeling atmospheric
turbulence and other adaptive optical devises. Most of this programs are written in C
and is open-sourced. It has also a Matlab version, but this version is only can run
under limited mode (only 64x64 grid dimension at most).

Arroyo [6], developed by Dr. Matthew Britton at California Institute of
Technology, is an open source C++ class library designed for modeling and
simulation of electromagnetic wave propagation through atmospheric turbulence and
adaptive optics system. Based on the object-oriented programming methodology and
other modern software engineering technology (e.g. coordinate free geometric
programming, the object factory design pattern, etc), this library is an excellent
software project which achieves powerful abstractions and good modularity,
reusability, and extensibility. This library also supports parallelized computation.

3. SciAO: goals and schemes

WaveTrain and CAOS are user-friendly, but they are proprietary in essential
(Though SCAO is open source, the IDL is proprietary), and their efficiencies are not
very well, because they are implemented by higher language. LightPipes and Arroyo
are more efficient, while it is hard to use them to simulate particular optics problems.

We want to develop a user-friendly simulation tool which can model and simulate
wave or adaptive optics easily, at the same time, it must be as efficient and credible as
other tested FORTRAN or C/C++ code. We also expect it is open-sourced and all of
other people in or out the filed of adaptive optics can use and improve it arbitrarily.

We select the Scilab as our fundamental developing platform (so it called),
because Scilab is open-sourced, and easy to learn and use for beginner. More
important, Scilab offers interfaces to external libraries written in other lower level
languages such as C and FORTRAN, which make it possible to use legacy code and
other open-source software. Furthermore, Scilab has a powerful visual modelling and
simulation enviornment, called Scicos, which is very semblable to the Simulink of
Matlab, or the Tempus of WaveTrain, or the Aplication Builder of CAOS. Using
Scicos, a simulation can be built by connecting together the required occurrences of
the desired modules (blocks), respecting only the logical constraints given by their
formalized input and output type, and then the block diagram will be analysed and
executed by Scicos itself. Complex simulation application are thus simply created by
assembling the elementary building blocks in a straightforward manner, so that the
user can concentrate on the scientific aspects of his special problems, while mundane
coding problems are managed by some automatic mechanism.

In developing this tool we did not "reinvent the wheels". All of the basic
techniques and algorithms used in wave optics which had already been implemented
and tested for previous wave optics codes, and all of the open-source code which we
can acquire, can be used by our toolbox. Where it made sense, we used the legacy or
open-source code directly. In some cases minor modifications were needed to satisfy
integration requirements, and in some cases it was simpler to rewrite the code. For
open-source codes which we have used in SciAO, we refer to Arroyo and LightPipes.

4. Status and functional description of SciAO (version 0.2)

We have worked on this toolbox almost a year and now it has been able to model
and simulate some simple wave and adaptive optics problems. In this part, we will
describe the basic structure and function of SciAO.

SciAO contains several elements, the main are:
z Some external optics routines libraries. They are kernels of the SciAO, and all

of the optics computation are actuated by them. Now two external library has
been integrated into SciAO: lightPipes and arroyo. We have made some
modification to their original codes in order to let them accord with
Scilab/Scicos environment, or let them be able to cross-platform run under
Microsoft Windows/Visual Studio .net 2003 and Gnu/Linux. Optics libraries
also include another routines library we called Wrapper, which is some C
wrappers to Arroyo C++ class library. We need such a C wrapper library
because Scilab/Scicos now has not been able to interface C++ class library
directly.

z C routines libraries that interface external optics library to Scilab/Scicos.
There are two such C routines libraries: the interface function library of
Scilab functions for Optics, and the computational function library of the
Scicos blocks for Optics. Now we have constructed about one hundred Scilab
functions to optics, and about thirty Scicos blocks to optics.

z Some Scilab scripts, include the interface functions of Scicos blocks for
Optics, and some other useful functions written by original or SciAO’ Scilab
functions. There are also some TCL/TK scripts we use them to construct
some beautiful GUI.

z Many examples of Scicos diagrams and Scilab simulation scripts. We have
written these examples using the Scilab functions and Scicos blocks of our
SciAO toolbox, so that beginners can learn and grasp the use of our toolbox.
Further, users can construct their special simulation models of wave optics or
adaptive optics at the base of these examples we have provided.

At below, we will give an outline description of the main Scilab functions and

Scicos blocks of our SciAO toolbox. We start from the blocks. Figure 2 gives out the
Scicos palette of SciAO.

figure 2: the optical Scicos palette in SciAO

As Figure 2 points out, there are now more than twenty optical Scicos blocks in

SciAO. In them, the blocks labeled Begin and Emitter can be used to model optical
“sources”, while Display, Animate, Fits, and Diagnose blocks model optical “sink” (or
say it detectors). All the other optical blocks in this Figure are used to model and
simulate various optical equipment, such as atmospheric refractive layers (ATM),
deformable mirrors (DM), Shack-Hartmann sensors (SHS), apertures (AP), beam
splitter (Split), lens (Lens), reconstructor of wavefronts (REC), proportional integral
controller (PIC), or other optical transforms, such as geometrical optics transform (the
Geometry block), the normalization of intensity (Norm), and frame transforms
(Convert), fast Fourier transform (FFT), and so on. We will add more and more blocks
to let it be able to model other optical devises or transform at later versions of SciAO.

Besides above Scicos blocks for optics, we also write a number of Scilab function
to model various optical equipments or optical processes and now the number of these
functions is about one hundred. Now we give them some description. They can be
include in these types (we list most of them, and give some brief description for its
function in brackets):
z Emitters: begin (form unit plane wave); emitter (construct light emitter);

gauss (form Gauss beam); pl_wave (form general plan wave); sp_wave (form
spherical wave or point source); etc.

z Detector or Output: dwf_fits (write wavefront to fits file); cros_out (write
the cross sections of a field); file_pgm (write field to a pgm files); file_ps
(write field to a ps file); file_int (write the intensity of field to a file); file_pha
(write the phase of field to a file); znk_fits (write Zernike mode to a fits file);
ref_atm_lay_fits (write a refractive atmospheric layer to a fits file);
atm_mod_layers_fits (write all the layers of a atmospheric model to fits files);
reconstructor_fits (write the reconstructor of a AO system to a fits file); etc.

z Wavefronts and Propagators: wavefront_header (create the wavefront

header of a field); set_dwfh_timestamp (set the timestamp of a wavefront);
set_dwfh_curvature (set the curvature of a wavefront); fresnel (Fresnel
propagator); forvard (FFT or spectra method propagator); forward (Direct
integration method propagator); lens_forvard (FFT or spectra method
propagator for spherical wave); lens_fresnel (Fresnel propagator for spherical
wave); steps (Finite difference method propagator); geom_propagation
(geometric optics propagator); near_angular (near field angular propagator);
near_fresnel (near field Fresnel propagator); far_fresnel (far field Fresnel
propagator); far_fraunhoffer (far field Fraunhoffer propagator); fresnel_grt
(far field Fresnel and Goertzel-Reinsch tranform propagator); fraunhoffer_grt
(far field Fraunhoffer and Goertzel-Reinsch tranform propagator); etc.

z Telescope aperture and its transforms: circ_ap (circular aperture); rect_ap
(rectangular aperture); hex_ap (hexagonal aperture); annul_ap (annular
aperture); spid_annul_ap (spidered annular aperture); til_hex_ap (tilted
hexagonal aperture) ; aperture_transform (transform a wavefront by aperture);

z Atmosphere models: power_law (create power law of turbulent spectrum);
von_karman_power (Von-Karmman power spectrum); greenwood_power
(Greenwood power spectrum); null_inner (null inner scale of a power law);
exponent_inner (Tartaskii exponent inner scale); frehlich_inner (Frehlich
exponent inner scale); power_spectrum (isotropic power law spectrum of
turbulence); null_subm (null subharmonic method); quad_pix_subm
(quad-pixel subharmonic method); lane_subm (Lane subharmonic method);
johansson_gavel_subm (Johansson-Gavel subharmonic method);
general_subm (generalized subharmonic method); ref_atm_lay (create
refractive atmospheric layer); ref_atm_lay_transform (transform a wavefront
by refractive atmospheric layer); hardy_wind (create Hardy wind);
get_hardy_wind_vectors (get the wind vectors of Hardy wind model);
ref_atm_model (create generalized refractive atmospheric model);
ell_cer_pac_mod (Ellerbroek Cerro Pachon atmospheric model);
ell_mau_kea_mod (Ellerbroek Mauna Kea atmospheric model);
pal_dimm_mass_mod (Palomar DIMM MASS atmospheric model);
huf_val_mod (Hufnagel Valley atmospheric model); slcsat_day_mod
(SLCSAT daytime atmospheric model); slcsat_night_mod (SLCSAT
nighttime atmospheric model); tmt_srd_v13_cn2_mod (TMT SRD v13 Cn2
atmospheric model); gemini_glao_study_mod (the Gemini GLAO study
model); get_atm_mod_dwfh (get the wavefront of an atmospheric model);
get_atm_mod_layers (get all the refractive layers of an atmospheric model);
atm_mod_lay_number (get the number of refractive layers of an atmospheric
model); atm_mod_lay_heights (get the heights vectors of a model); etc.

z Optical devises and transform: lens (create a lens); file_ter (general file filter);
zernike (Zernike mode filter); random (random filter); b_mix (beam mixer);
b_split (beam splitter); l_amplify (Laser amplifiers); tilt (tilt modes of the
field); absorber (beam absorber or amplifier); etc.

z AO appropriative devises and its transforms: lnslt_array (Shack Hartmann

lenslet array); lnslt_arr_transform (transform wavefront by Shack Hartmann
Sensor); create_shcentroids (create Shack-Hartmann centroids);
actuator_array (create actuator array for a deformable mirror); ideal_dm
(create ideal deformable mirror); ideal_dm_transform (transform wavefront
by a ideal deformable mirror); set_dm_timestamp (set the timestamp of a
deformable mirror); set_dm_actuator_positions (set the positions of the
actuators for deformable mirror); set_dm_actuator_commands (set the
command vectors of the actuators for deformable mirror); ideal_ttm (create
ideal tip-tilt mirror); set_ttm_timestamp (set the tamestamp of a tip-tilt
mirror); set_ttm_commands_vector (set the command vectors of a tip-tilt
mirror); ideal_ttm_transform (transform a wavefront by a tip-tilt mirror);
pi_controller (create a general proportional integral controller);
ttm_pi_controller (create proportional integral controller for a tip-tilt mirror);
dm_pi_controller (create proportional integral controller for a deformable
mirror); ttm_pi_update (update the proportional integral controller of a tip-tilt
mirror); dm_pi_update (update the proportional integral controller of a
deformale mirror); create_ttm_commands (create the command vector of a
tip-tilt mirror); create_dm_commands(create the command vector of a
deformable mirror); reconstructor (create a wavefront reconstructor for a AO
system); zernike_residuals (get Zernike mode residual of the corrected
wavefront); zonal_residuals (get zonal residual of the corrected wavefront);
atm_mod_lays_transform (transform wavefront by an atmospheric model);
etc.

z Others: znk_mod (create Zernike polynomial); set_znk_cos_coef (set the
cosine coefficient of a Zernike polynomial); set_znk_sin_coef (set the sine
coefficient of a Zernike polynomial); pixel_array (create a 2D pixel array);
set_pix_arr_data (set the data of a 2D pixel array); three_point (create a
point in 3D space); three_vector(create a vector in 3D space); three_frame
create the frame in 3D space); three_translation (create a translation in 3D
space); three_rotation (create a rotation in 3D space); convert (convert the
frame between plane and spherical frame); normal (normalize the wavefront
to unit intensity); pip_fft (FFT spactial filter); interpol (interpolate a field);
strehl (get the Strehl ratio of a field); etc.

For more information about the Scilab functions or Scicos blocks which we has

constructed for our SciAO toolbox, please consult the online help documents.

5. Application examples
In this part, we will give two examples to demonstrate how to model and simulate

optical problems using the SciAO toolbox. The first example is about Young’s
interferogram, while the second relates to SCAO systems. For more examples, consult
the “examples” directory in our SciAO release version.
z Young’s interferogram
Consider such an experiment: suppose a completely coherent plane light, having

unit amplitude and 550 nm wavelength , vertically irradiate to a board possessing two
circlular holes, apart from 0.5 mm and both have radius R=0.25mm, we want to
oberserve the interferogram at the distance 30 cm behind the plane.

We can easily model such an experiment using the Scilab functions we have
designed for SciAO. Below is a Scilab script which simulate such a physical process:

m=1; cm=1e-2*m; mm=1e-3*m; nm=1e-9*m;

ngrid=256; size=5*mm; lamda=550*nm;

radius=0.25*mm; shift=0.5*mm; distance=30*cm;

init_field = begin(size,lamda,ngrid);

circ_ap_1 = circ_ap(init_field,radius,shift);

circ_ap_2 = circ_ap(init_field,radius,-shift);

mix_field = b_mix(circ_ap_1,circ_ap_2);

dwf_fits(mix_field,"plane");

interf_field = forvard(mix_field,distance);

dwf_fits(interf_field, "interferogram");

intensity=field_int(interf_field);

x=1:ngrid; y=1:ngrid; grid=[1,1,ngrid,ngrid];

grayplot(x,y,intensity,strf="030",rect=grid);

In above script, we have written field to two FITS files (Flexible Image Transport
System, it is the standard data format used in astronomy. Of cause, you can write them
into other format, such as PS or PGM, etc., and we have also provided some other
functions to support these format in SciAO): plane.fits and interferogram.fits, and at
the same time plotted the interferogram directly.

A more intuitional method to model and simulate in SciAO is using the optical
Scicos blocks which we have designed for SciAO. Figure 3 gives out a diagram that
can model above Young’s experiment. In this diagram, we have packed the board to a
super-block for concision, whose content is revealed in Figure 4.

figure 3: the diagram to model Young’s interfere

figure 4: the contents of the super-block in figure 3

Two methods (using Scilab functions or using Scicos blocks of SciAO) is

equivalence. We give out the results of simulation in figure 5:

figure 5: left is the field at the behind of the board

right is the interferogram

z SCAO system
Analogously, we can model and simulate AO systems by two equivalent methods

in SciAO. We first give a diagram example in figure 6 to simulate a simple SCAO
system.

figure 6: the diagram to model a SCAO system

The Scilab scripts that model this simple SCAO system is lengthy, so we do not

give them out here. All the parameters to simulate this system are about 70, and we
have designed a GUI to simplify the input process. The GUI is plot at Figure 7:

figure 7: the GUI to model a SCAO system

In Figure 8 we give out two figures to demonstrate the process of adaptive

correction:

figure 8: the left is an uncorrected image and the right a corrected image

6. Conclusion, future extensions and plans

The objective that we select the Scilab/Scicos environment and design SciAO
toolbox for it is to make an optical simulation much more easier and user-friendly
than original FORTRAN, or C/C++ codes, without sacrificing fidelity or efficiency.
We also expect other researchers in the field of modeling and simulation of adaptive
optics to use, correct, and improve this toolbox, so we release it under GPL license.
We believe we have met our original objective. Users now can build models from
scratch, or simply copy an existing model, then modify it to suit their needs. More
advanced users can create their own components at the top of our fundamental C/C++
rountines or our optical Scilab functions, which can then be used and reused just like
those in our Optics library or other Scilab library.

At the same time, there remains considerable room for improvement. Now SciAO
is only at its infancy and is very much under development. To model and simulate
more complex application problems in wave or adaptive optics, we need construct
other software modules. Other than, the documentation is never up to date; The
component library is far from complete, and many of component interfaces could be
improved; The GUI is getting better and better, but there is always more to do; And so
on. We are hard at work on all these things.

7. References
[1] Hardy, Adaptive Optics for Astronomical Telescopes, Oxford Press, 1998
[2] http://www.scilab.org/ and http://www.scicos.org/
[3] http://www.mza.com/
[4] http://www.arcetri.astro.it/caos/
[5] http://www.okotech.com/software/lightpipes/
[6] http://eraserhead.caltech.edu/

